0%

分布式之BASE原则

作家萧伯纳说:“人生有两大悲剧,一个是没得到你心爱的东西,另一个是得到了你心爱的东西。”学者周国平则说:“人生有两大快乐,一个是没有得到你心爱的东西,于是你可以去寻求和创造,另一个是得到了你心爱的东西,于是你可以去品味和体验”。

一、概念

      BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)的简写。BASE理论是对CAP原则中的一致性和可用性进行一个权衡的结果,它源于对大规模互联网系统分布式实践的总结,是基于CAP定理逐步演化而来的。BASE理论的核心思想就是:我们无法做到强一致,但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性。

  1. 基本可用:指分布式系统在出现不可预知故障的时候,允许损失部分可用性。比如:

    • 响应时间上的损失:正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障,查询结果的响应时间增加了1~2秒。
    • 系统功能上的损失:正常情况下,在一个电子商务网站上进行购物的时候,消费者几乎能够顺利完成每一笔订单。但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
  2. 弱状态:指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。

  3. 最终一致性:强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事务ACID特性是相反的。它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起